Deep learning in fluid dynamics
نویسندگان
چکیده
منابع مشابه
Modeling Dynamics with Deep Transition-Learning Networks
Markov processes, both classical and higher order, are often used to model dynamic processes, such as stock prices, molecular dynamics, and Monte Carlo methods. Previous works have shown that an autoencoder can be formulated as a specific type of Markov chain. Here, we propose a generative neural network known as a transition encoder, or transcoder, which learns such continuous-state dynamic pr...
متن کاملCorefrence resolution with deep learning in the Persian Labnguage
Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...
متن کاملNamed Entity Recognition in Persian Text using Deep Learning
Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملSimultaneous Detection and Quantification of Retinal Fluid with Deep Learning
We propose a new deep learning approach for automatic detection and segmentation of fluid within retinal OCT images. The proposed framework utilizes both ResNet and Encoder-Decoder neural network architectures. When training the network, we apply a novel data augmentation method called myopic warping together with standard rotation-based augmentation to increase the training set size to 45 time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2017
ISSN: 0022-1120,1469-7645
DOI: 10.1017/jfm.2016.803